UAF DMS Guidelines for MATH 230X Essential Calculus with Applications

10.4 Continuity	1-1½ days
10.5 Average Rate of Change	1 day
10.6 Instantaneous Rate of Change	1 day
10.7 Definition of Derivative and Power Rule	1-1½ days
10.8 Techniques for Finding Derivatives	1 day
10.9 Applications: Marginal Analysis	1 day
Exam over Chapter 10	5
11.1 Product and Quotient Rules	1 day
11.2 The Chain Rule and General Power Rule	1-1½ days
11.3 Implicit Differentiation and Related Rates	2 days
11.4 Increasing and Decreasing Intervals	1 day
11.5 Critical Points and the First Derivative Test	1 day
11.6 Absolute Maximum and Minimum	1 day
12.1 Concavity and Points of Inflection	1 day
12.2 The Second Derivative Test	1 day
12.3 Curve Sketching: Polynomial Functions	1-1½ days
12.4 Curve Sketching: Rational Functions	1 day
12.5 Business Applications	1 day
12.6 Other Applications	1-2 days
Exam overs Chapters 11 and 12	1 2 0035
13.1 Derivatives of Logarithmic Functions	1 day
13.2 Derivatives of Exponential Functions	1 day
13.3 Growth and Decay	1-1½ days
13.4 Elasticity of Demand	1 day
13.6 Differentials	1 day
14.1 The Indefinite Integral	1 day
14.2 Integration by Substitution	1 day
14.3 Area and Riemann Sums	1-2 days
14.4 Fundamental Theorem of Calculus	1 day
14.5 Area Under a Curve with Applications	1 day
14.6 Area Between Curves with Applications	1 day
15.1 Integration by parts	1 day
15.2 Annuities and Income Streams	1 day
15.4 Numerical Integration	1 day
Exam over Chapters 13, 14, and 15	-
Review Chapters 10-15	<u> </u>
Final aven Chanters 10, 15	

Final over Chapters 10-15

.‡

6. Types of Assessments ./

for online work through HAWKES, mastery level should be no less than 75% instructors (rs)9S0cm0 g0 G()]TETQq0.00000912 0 612 792 reW* nQ EMC /P/FC5doo

must be cumulative and representative of the entire course must include problems from each Assessment Criteria listed on the next page Students are expected to know on their own (no formulas provided on the test for the following):

differentiation formulas integration formulas

7. Assessment Criteria

.7

Final exams should contain problems that demonstrate

- Algebra

simplify algebraic expressions involving negative and fractional exponents, compound fractions, and rational

expressions

solve a problem using modeling with equations (eq. area, length, mixtures, distance, or rate)

Limits

evaluate a two-sided limit evaluate a one-sided limit evaluate an infinite limit express with proper notation find limits from graph

Continuity

.8

find domain and range find intercepts find critical and hypercritical points find asymptotes identify intervals where the function is increasing or decreasing identify intervals where the function concave up or down identify points that are extreme values or inflection points Differentiation and integration understand and use basic properties find derivatives of more complicated functions *Chain rule *Logarithmic Differentiation find integrals of more complicated functions *Integration by Parts *Numerical Integration understand the fundamental theorem of calculus Apply Derivatives to Applications (minimum of 2) modeling with related rates modeling with optimization modeling with differentials modeling with growth/decay modeling with Elasticity Apply Integrals to Applications (minimum of 2) modeling average value modeling surplus modeling growth/decay modeling area modeling rate of flow

8. Grading Policy

Ъ.

'n · · · · · · · · · · · · · · ·

Withdrawal and Incomplete policies must b7-4@11E3JETQq0.00000912 0 612 792 reW* nBT/F1 9.96 Tf1 0 0 1ftitly.000.3.8